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The basic premise underpinning precision farming is that variation in crop
growth observed within a field can be explained in terms of measurable growing
conditions. A wide variation in crop growth within farmers' fields has now been
observed in numerous maps of yield, determined both by stop-and-weigh techniques
and by on-the-go yield monitors. This phenomenon, however, is not new, having
been observed 70 yr ago (Anonymous, 1926, Linsley & Bauer, 1929). Further,
remote sensing techniques have shown within-field variation in crop response to
water or other stresses for some time, although no reliable link has been established
between these measurements and final yield. Farmers have recognized variability but
until recently lacked the technology to manage it. Verhagen and Bouma (1997, this
publication) have addressed how to model the variation in soils and soil
characteristics considered important to crop growth and yield (e.g., water, fertility,
pests). The purpose of this chapter is to describe the state of the science of modeling
crop yield for use in site-specific farming.

In spite of extensive literature on models in agriculture, ecology, and related
disciplines, many of which have clearly defined spatial capabilities or applications,
there exist few examples of models that have been applied to, or are directly
applicable to, site-specific farming. Consequently, we have broadened our
perspective to include models that appear easy to adapt to site-specific farming and
for which input data are potentially obtainable.

TYPES OF MODELS

Appropriate models of crop yield would integrate the effects of input levels
to predict the final yield at a point in a field. We use appropriate because the
required accuracy remains to be defined. For now, let us consider appropriate to
mean accurate enough for the purpose for which the model is used. We will return
to this general topic later. Crop models could be used to run simulations to support
planning at scales from strategic (what to grow, or interpretations of yield maps),
tactical (when to perform cultural tasks), logistical (labor and other resource
allocation), to operational (how to control variable rate equipment). Issues
important to transporting models between scales and objectives were addressed for
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bio-economic models of crop productions systems by King et al. (1993), who
classified model objectives into the four broad categories: theory building, model
tool development, technology and policy assessment, and management decision
support. They observed that the original objective places important constraints on
model structure, so that although many concepts and methods can migrate across
objectives, models developed specifically for one objective may be difficult to adapt
to another.

Whatever the scale or modeling objective, models written to support
decisions generally contain complexity correspondins to the level of detail embodied
in the operation being controlled. For example, at one end of the spectrum, models
commonly used at long-term (annual or longer), broad-scale (county-wide or crop
reporting district) levels have usually been based on empirical, often regression-
based, relationships between yield and other factors such as rainfall or soil water
storage (e.g., Leeper et aI., 1974a,b; Runge & Benci, 1975). At the other end of the
spectrum, models consist of complex descriptions of subcanopy-level crop processes
on a time scale measured in seconds that require dynamic inputs and parameters
numbered in dozens (e.g., Lemon et al., 1971). Between these extremes, many
models operate on daily time steps and balance mechanistic rigor against data
demand and computer time (e.g., IBSNAT, 1990). For such models, the choices of
approach and of scale are not trivial, as witnessed by heated debates at modeling
workshops for the past two decades.

Recent developments in spatial data acquisition and management, using
remote sensing, digital terrain analysis, computerized cartography, and Geographic
Information Systems (GIS), have lent themselves to a new type of model that does
not fit the above descriptions. These models, which use rule-based logic, operate on
both qualitative and quantitative characteristics of discrete parcels of land. An
extension of rule-based models does not operate with discrete land use boundaries,
but on gradual transitions across a border zone. This technique is based on fuzzy set
theory, wherein points in the border zone belong to both areas, to a degree
depending on proximity to the boundary. Rule-based models have been used to
model the spatial distribution of soil attributes for ecological (Environmental
Monitoring and Assessment Program, 1993) and agricultural (Ambuel et al., 1994;
Cook et aI., 1996) applications. This approach has particular utility for data-intense
spatial applications. The usefulness of a G,IS-based approach is enhanced if
operations on individual points are simple enough to be handled within the GIS
itself, and if the data are structured to permit families of points to be treated
similarly, with characteristics of data layers pertaining to each point being varied

simultaneously.
Authors of several conventional models have developed them into more

general systems by nesting them within controlling structures (e.g., GOSSYM
[Baker et al., 1983] within COMAX [Lemmon, 1986]), by rewriting the model
structure to allow multiple runs (e.g., CERESV2.10 [Ritchie et al., 1989]), or by
starting from scratch (e.g., EPIC [Williams, 1995]). Others have taken an original
model and made multiple runs for scenarios describing variability in space. We will
discuss such uses of these models later.

From the begiru1ing of modeling, researchers have attempted to make use of
all available data. Accordingly, when data are available to evaluate a model,
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provisions have sometimes been made to calibrate parameters, or to correct a
model's state variables that have accumulated too much error. Soil water content
is one common candidate for such user feedback because soil water balance has been
both historically difficult to match and extremely important to crop models (e.g.,
SORGF [Maas & Arkin, 1978]). A number of approaches have been used. In the
cited example, a state variable was adjusted to match in-season observations. Others
have used in-season data to manually calibrate parameters for a test data set (e.g.,
most mSNAT models), or used remotely-sensed crop data to objectively re-
parameterize a model (Maas, 1988, 1993). A further adaptation involved the use of
observations as direct inputs to drive a model. For instance, crop phenology can be
either simulated or input to the CERES-Maize model (V2.1; Ritchie et al., 1989).
The ultimate combination of models, data, and controller equipment will probably
stretch the imagination of a current modeler. For example, one could envisage a
model that uses a combination of previously measured spatial data (for instance, soil
maps or last year's yield) combined with data from one or more on-the-go sensors
(organic maUer, texture) or from visual observations by the farmer to control a
variable rate technology (VRT) applicator in real time.

TRENDS IN MODELING

The advent of increased computing power has allowed the development of
more complex models and their application to longer-term scenarios and broader
spatial scales. Realism is increased by adding the effects of factors such as pests
(weeds, insects, diseases), fallow seasons, severe weather (frost, hail, wind, flood),
crop rotations, and alternative cultural practices. Longer-term scenarios require that
processes considered negligible in the short term, such as effects of cultivation on
soil characteristics, need to be accounted for. Broader spatial scales require the
incorporation of landscape feature interactions, including transport across area
boundaries, such as runoff: erosion, and migration of pests. Modifications of ex.isting
models as well as new models that begin to account for these changes have been
reported, and will inevitably continue to be developed. Lessons from long-term
global climate change modeling and landscape ecology modeling may be useful to
the agricultural modeling community (Fedra, 1993; Goodchild et aI., 1993).

Although a specific objective of models such as the DSSAT/IBSNAT group
is to describe the effects of varying soils on crop yield, there are few cases where
crop models have been used to contribute to site-specific crop management. Such
limited application appears to be caused by lack of data on within-field variability of
soils, although ex.isting models do not necessarily represent the complex interactions
between soil, weather, and crop growth sufficiently accurately for VR T decision
support purposes. Most models were developed for homogenous soils, such as
research plots. Evaluations usually consisted of making runs for widely contrasting
soils, such as are mapped at the county level (map scale of less than 1:12000), and
calculating the amount of variation explained. In cases where data resolution for
within-field variation has been studied, the soil map resolution has been at a scale
an order of magnitude finer (greater than 1: 1 700; Sadler et al., 1997). It remains
to be seen how arduous it would be to collect the data needed to parameterize and
test models on scales meaningful to precision farming. Some applicable work has
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been published. Table 4-1 lists cases where models have been combined with GIS
applications at scales ranging to the farm or field level, and where models have
specifically examined variation at levels corresponding to soil map unit-level.

In all cases in Table 4-1, the models used were wholly deterministic, i.e.,
they were built to provide a single average prediction based on specific input values.
Models were run once for each map unit or grid square and outputs were
aggregated. For a limited subset of models, some researchers have provided an
estimate of the variance as well as the mean. While not fully analogous, this
methodology is similar to uncertainty analysis, in which uncertainty in inputs is
propagated through the system of equations via partial differentials with respect to
pertinent input variables (Morel-Seytoux, 1993). This procedure can be helpful for
simple models, especially analytical ones with few inputs. Since optimization
procedures often require some partial differentials, techniques could perhaps be
acquired from differential equations. One drawback is that logistical difficulties
associated with essentially doubling source code limits this approach for many
complex models. A second drawback is that uncertainty analysis presumes
independent stochastic variation In inputs, whereas in real fields there is likely to be
systematic spatial correlation. Further, most complex models produce conditional
results, meaning that because some input or state variable crossed a threshold, a
different algorithm was employed. Such results would then be from multiple
distributions, which violates assumptions implicit in uncertainty analysis, and for that
matter, Monte-Carlo procedures as well.

Statistical techniques for analyzing spatial data, including variography,
kriging, spatial regression, and applied time series analysis, have so far been used
primarily to describe variation. It might be useful fo~ a model to predict a mean and
variation. For instance, if the degree and spatial distance of autocorrelation were
found to depend on some weather, crop, or soil parameters, then a model could be
developed to predict them. Such information could be very useful in a micro-
economic production analysis of site-specific methods. For the time being, however,
it appears that research in this area will continue to use deterministic models in
multiple-run scenarios with varying inputs.

RESEARCH NEEDS

Input Data

Site-specific management may require extensive data not previously available
and potentially very costly to acquire. Consequently, research is critically needed on
how to obtain cost-effective information for input to VR T controllers, models, and
other decision support tools. Traditional point-sampling techniques may not fulfill
this need at an affordable cost, although such techniques may be supported in the
future by expert systems. Methods that allow data to be collected in bulk, such as
remote sensing and aerial photography, or during field operations, such as on-the-go
sensors and monitors, will be the ones most likely to satisfy th~ demand for data.
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Table 4-1. ModeVGeographic Information System (GIS) combinations and uses of
models for site-specific studies.

Citation System name: Model with GIS Scale used
name, ifusedt

Berti et aI., 1986 n/a: CERES-Maize VI.O, no GIS

Sadler et aI., 1988

Ritchie and Amato, 1990

n/a: CERES-Maize, CERES-Wheat,
SORKAM, no GIS

n/a: CERES-Maize, no GIS

soil map unit,
1:1200

soil map unit,
1:1200

classed by plant
extractable soil
water

regionCalixte et al., 1992

Papajorgi et aI., 1993a

La! et aI., 1993
region
region, 1:20000

Hoogenboom et al., 1993 soil map unit,
-0.5 ha min

CannPapajorgi et al., 1993b

Wei et aI., 1994 field

Papajorgi et aI., 1994 field, map unit

AEGIS VI.O: DSSAT V2.1 with PC
Arc/Info, dBaseIV

AEGIS_2: more generic version

AEGIS: DSSAT-BEANGRO VI.OI
with PC Arc/Info

IAEGIS: DSSAT V2.I with PC
Arc/Info V3.4I

AEGIS_2.S: DSSA T V2.S with PC
Arc/Info

IAEGIS: DSSAT V2.I with Unix
Arc/Info V6.I

AEGIS +: DSSAT V3.0 with Unix
Arc/Info V6.I

n/a: SOYGRO, no GISMunster et al., 1994 soil map unit,
1:20000

watersheddeJong and Reynolds, 1995

McCauley et al., 1995 grid in field

Engel et aI., 1995 field

n/a: LEACHM with ILWIS Vl.3
(objective was atrazine loading)

unnamed: GOSSYM/COMAX with
GRASS
AEGIS/WIN: DSSAT with ArcView
2.0

Verhagen et al., 1995 n/a: SUCROS87, no GIS 50-m grid

Verhagen, et aI., 1995 n/a: WAVE, GIS not stated 50-m grid

Ran et aI., 1995 unnamed: SIMPOTATO with PC 12.2-m grid in
ArclInfo 50-ha center

pivot

Verhagen and Bouma, 1997 n/a: W AVE, GIS not stated 50-m grid

tMention of trade names is for information only. No endorsement implied
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Modeling

Scale issues and accuracy

The most critical research need for the modeling community is to recognize
the special needs of the scale involved in site-specific fanning. Soil maps are usually
drawn at scales from 1: 12 000 to 1 :24 000, which probably mask economically
important variability. Beckett and Webster (1971), for example, reviewed the
literature on soil variability and found that most within-field variation was already
present within an area of one hectare. Moreover, boundaries on soil maps are
generally drawn using pedological rather than agronomic criteria. Variation within
map units is likely to be important if the full 'return on VR T investment is to be
realized. Such variation increases demands for field data, no matter what model is
used. Models themselves must be sensitive to all factors that limit yield in the
particular circumstances of interest. This issue is critical for the accuracy of a model,
which cannot be stated in general, because it depends on the task considered;.
however, to be useful, for instance, in controlling a VRT N spreader, a model must
at least be qualitatively accurate. Qualitative accuracy means that if a model
simulates an increased yield (for some majority of likely weather scenarios) for an
increment of applied N, one must assume beforehand that the real response is also
an increase, otherwise the application would be optimized counter to the real
response. Qualitative accuracy is often exploited by comparing ratios between model
outputs or between observed and predicted values; however, operating a VRT
application with such information would still be subject to quantitative inaccuracies
in the marginal response to inputs if it were used for an optimization. The next
higher level of accuracy would be where the model is absolutely accurate (within
some limits), which means that it predicts the average well. This provides a better
estimate for comparisons with other, nonmodeled options. Practical, quantitative
accuracy would require that both the mean and the differential with respect to all
inputs of interest were predicted within bounds suitable for the task at hand.

Several processes appear to require greater quantitative accuracy than that
commonly obtained by modeling. These include water relations (rainfall partitioning,
soil water holding capacity, crop water use, root growth), fertility (chemical
transformations, pH effects, cation-exchange 'cap"acity), effect of stratified soils
(water relations, root growth and distribution), organic matter balance and its effect
on the physical and chemical properties of soil, other soil effects (consider a yield
map that showed a wheat yield depression where the field had been disked while too
wet), and temperature and daylength effects on phenology (consider spatial variation
in maturity for field crops, or long-maturing crops such as pineapple (Ananas
comosus (L.) Merr.». In some circumstances, the importance of soil variability can
obscure the problem of obtaining appropriate meteorological information. Many
meteorological variables can be extrapolated over distances of tens of kilometers
without introducing serious errors, provided the ten:ain is reasonably homogeneous;
however, soil temperature and air minimum temperature are sensitive to small
differences in topography and soil type while solar radiation and evapotranspiration
rate can be influenced by aspect or by shade cast by topography or woodland. Many
models do not contain the structures to account for the processes outlined above.
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Perhaps the trend toward modular models will accelerate the process of adding these
important components.

Discrete Effects

In addition to the quantitative factors mentioned above, many discrete
choices are made by managers and planners, and many external factors affect crop
yield with discrete, sometimes extreme, results. Examples of choices made by
managers include cultivar, tillage type, and pest management method. Many choices
have corresponding quantitative inputs as well, such as population, depth of tillage,
and pesticide application rate; but these are generally handled if the structure exists
in the model. Examples of external factors with potential for extre!ne effects include

weather (hail, wind, frost, or flooding), pests (weeds, insects, disease, or animals),
and accidents (spills, or spray drifting onto a sensitive crop). While the simulation
of these effects must be detenninistic, the stochastic information ( probability of
occurrence and severity of outcomes) should be useful to long-term planning. In
addition, many of these processes and factors are distinctly spatial in nature,
sometimes in predictable fashion, sometimes not. Therefore, information about their
spatial extent would be useful.

Input/Output Formats and Standards

Standardization of inputs and outputs in tenns of both the attributes required
and methods used to evaluate them has been occurring for some time, both formally,
as in the mSNAT project objectives, and informally, as a natural consequence of
models needing similar inputs and predicting similar outputs. There is a clear long-
term, overall benefit to the standardization process, in that data may be transported
more easily. There is a short-term, project-specific cost in that a standard is not
always optimal for the model in question. Also, expansion of the use of data often
brings with it expansion of data needs beyond those anticipated during standards
development. Perhaps agricultural modelers can follow the lead of the
microcomputer software industry, where most of the general word processing and
spreadsheet applications can read others' files, either directly or via a conversion
utility supplied with the software. This allows data transport, but does not force
complete standardization on the industry. Whatever route is taken concerning data
format, there will be a massive amount of data that will be difficult to manage unless
new and better data management tools are developed. This issue is currently being
addressed for storage and communication of yield and soil fertility data between
monitors, controllers, and equipment by the Ag Electronics Association (A*E*A,
mailing address: 10 So. Riverside Plaza, Suite 1220, Chicago, IL 60606-3710). Data
documentation, database indexes, central archives, file transport tools, and
conversion routines must evolve as the quantity of data grows.

Landscape Integration and Planning Horizon

We see a need for the continued integration of farm scale models to allow
complex studies of whole landscapes. This must include the possibility of transport
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among landscape components, with a critical need for capability to account for
runoff-run on ofrainfa1l. We also see a need for continued increase in time scale, to
a\low multiple-year scenarios for calculating probabilities of occurrence, and for
predicting long-term effects on properties currently input as constants.

Geographic Infonnation Systems

We expect continued integration of traditional modeling with geographic
information systems, global positioning systems, on-the-go sensors, and variable rate
technology in general. This integration has been and will continue to be achieved
using both altered model structure and model controllers that feed varied inputs to
the models.

Project Management Tools

A topic not extensively developed but one that shows potential is the
integration of models into project management tools. These are used extensively in
the construction and manufacturing industries to -schedule tasks and allocate
resources. Farming practice is a collection of tasks, and should be amenable to
classical techniques for project management. Integrating models (if appropriately
accurate) into tools for management decisions regarding scheduling and resource
allocation should contribute to enterprise-level tactical and strategic planning.

Model Documentation and Distribution

Our final topic is the documentation and distribution of the models
themselves. Beyond the data management needs discussed above, there is also a
need for ensuring fidelity of versions and for requesting, making, and documenting
changes. Validation, or if one does not like that term, building confidence in the
model, should be built into the model storage and distribution system so that all
users can find and understand the tests. Electronic journals, Internet sites, and other
techniques for publishing and maintaining models should be investigated.

CONCLUSIONS

The state of the science of modeling crop yield to contribute to site-specific
crop management can best be described as developing -not yet mature, but showing
potential. This is not to say that there is nothing that can now be done; rather, the
range of decisions that can now be supported with models is somewhat more limited
than the range of those that can be controlled with current technology.
Demonstrating ability of models to predict effects of soil variations on a finer spatial
scale than yet achieved would strengthen confidence in modeling for these purposes.
While not absolutely required in current-year decisions for VRT controllers,
demonstrating appropriate sensitivity to longer-term effects of management would
also be beneficial. We support continued emphasis on using modular model
structures, on increasing the quality and quantity of documentation, and on building
confidence through wide distribution and user feedback. When modelers recognize
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the need, they will respond with answers to the questions pertinent to site-specific
fanning. The challenge for the site-specific fanning industry is to pose the correct
questions.
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